
PROBLEM OF AN ANISOTROPIC PLATE WEAKENED BY CURVILINEAR 

CRACKS AND REINFORCED BY STIFFENERS 
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Boundary-value problems for an isotropic plane with curvilinear slits have been examined 
earlier (see [1-3]). The extension to the anisotropy case is given in [4, 5]. 

To reduce the possibility of the beginning of rupture and to prevent crack propagation, 
reinforcment of structure elements by stiffeners is used extensively. The problem of the in- 
fluence of the ribs on the stress distribution in an isotropic plate with rectilinear cracks 
was examined in [6-12]. 

A general system of integral equations is constructed in this paper, for an elastic ani- 
sotropic plate weakened by a finite number of curvilinear slits that are loaded along the 
edges by self-equilibrating external forces, and reinforced by a finite number of ribs, and 
a direct algorithm for the numerical solution is proposed. 

i. Let us consider the problem of the stress--strain state of an infinite anisotropic 
plate weakened by through curvilinear slits L~ (j = i, k), each of which is a smooth arc, and 
reinforced along the rectilinear segments Z s ~s = ,~) by stiffeners. Let us use the nota- 

h 
tion L= U Lj, l-----~ Z 8 We direct the normal n to the right for the positive direction of by- 

J=l 8=I 

passing the line L, Z (Fig. i). 

= ~= and shear = A self- At infinity the plate is subjected to uniform tension Ox, Y rxy. 

equilibrated continuous load X$ (t) + ~y$(t) ~ 11" (t = x + ~y~L, is given on the slit edges (the 

plus refers to the left edge of the slit Lj). The rib Z s is loaded at the end z ~ by a force 
Ps whose direction is opposite to the vector e~% o 

Let us assume that the size of the rib cross section and the thickness of the plate h 
are small compared to the length of the clamped section~ the plate is in a generalized plane 
stress state; the rib is continuously attached to the plate and operates as a one-dimensional 
elastic continuum. 

Let r(t)= {rs(t)It~ Is} be the contact forces occurring in the plate due to the ribs, and 
let us consider r(t) as volume forces in the plate (the positive direction for rs(t) agrees 
with the direction of the force Ps). 

Find two analytic functions $9(zv) , bounded at infinity and satisfying the boundary con- 
ditions [13, 14] 

t ~ f • (i.i) a (~) r (q) + b (,) r (i) + r (t~) = (0, 

~tl - - ~ 2  ~tl cos %b - -  s in  ~ ~ 1 - - ~  [~1 cos ~ - -  sill 
a ( ~ )  - -  ~2 - -  ~------~ ~2 cos ~ - -  s i n  @' b (~2) = ~2 - - ~ 2  ~ '  cos @ - -  s in  ~ '  

F(t)----_+ ( } t = _ ~ 2 ) ( ~ z e o s ~ _ s i n ~ ) ,  t ~ L ;  

h - = r ( O ,  ( 1 . 2 )  U + ~ U-~ 17+ ~ V-~ t ~ 

and the conditions of equality of the plate and rib strains along the contact line e + = e- = 

c o  (t ~ Zs): 
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Sv (0) = p~ c o s ~  + r v cos %% sin @ + qv~tv sinS(}, 

a 2 
Pv = n o v  - -  al~gv + al~, qv ---- al2~v + a2~itvx - -  azr 

r~ = a i ~  + a ~  - -  aCev~. 

(1.3) 

Here aij are l l o o k e t s  law coefficients; ~, corresponding characteristic numbers; ~, angle be- 
tween the normal n at the point t ~ L and the axis; tv ffi Re t + ~vImt; Es~ Fs~ Young's modu- 
lus and the cross-sectional area of the s-th rib; e • ~, T • n' ultimate values of the relative 

elongation in the direction Z, the normal, and tangential stress to the left and right; and 
Co, rib strain. 

2. The functions ~v(zv) that yield the solution to the boundary-value problem (i.i) and 
(1.2) will be sought in the form 

1 ! Av(t) r(t)d! ! ~ v ( t l d t v  
= + t - -  ~ B v  (~ = t , 2 ) ,  ( 2 . 1 )  

r  ~- f  t~--z~ " ~-d t v - - z  v 

w h e r e  A v ( t )  a r e  d e t e r m i n e d  f r o m  t h e  s y s t e m  o f  e q u a t i o n s  (t ~ l , s  = t ,  m) 

A l +  A 2 ' - -  -T- A I  + A2 = s in  ~}s/h, 

~qA 1 + ~t2A 2 + viAl  + ~t2A 2 : --cos ~s/h, 

, 2 . ~ 2 -  ~ 2 =  - a l ~ c ~  ( 2 . 2 )  
~IAI s ~t~A 2 + ~ 1A1 + an h ' 

A 1 A~ .41-- A~ al~ COS 0 s + a ~  s in  ~s 

~v(t) = {~flt)It~ Lj,] = l'k} and the contact interaction forces r(t) are the The complex functions 
fundamental unknowns of the problem. The constants B9 are determined in terms of the values 

oo co co 
G x , Oy , Tx, J. 

Since the first integrals in the expressions for @v(zv) from (2.1) yield the solution for 
an infinite plate without slits loaded by forces r(t) lumped on Z [15] ~ then taking account 
of (2.2)~ the functions @~(z v) automatically assure compliance with the boundary conditions 
(1.2). 

Using the Sokhotskii--Plemelj formula the conditions (I.I), (2.1) for @~(z~) , we obtain 
(t ~ L) 

(~2(t) = Fl(t) - -  a(~'.)c0~(t) - -  b(~)~%(0; ( 2 . 3 )  
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a'(~))(Dl(t~) -~- b(tl$O~(tl) + Ou(te) = F,Jt)/2, 
Yi(t) = F+(t) --  F-(t), F2(t) = F+(t) + F-( t ) .  (2.4) 

Substituting the expression for m~(t) from (2.3) into (2.1) and (2.4), we have a singu- 
lar integral equation (m(t) = mx(t)) 

' f f Zi ~L "r l - - t l  ]- k l( t '  7;)~~ dl "t-, k2 (t, z) o~(x)dl + ~f k3(t r) r ( x ) d l =  / l ( t ) ,  t ~ L. 
L L ! 

(2.5) 

We obtain the second integral equation by substituting @v(zv) from (2.1) into (1.3) and 
replacing m~(t) by m,(t) by means of (2.3) 

/2 (0 = -- 2,~ Re 

The additional constraints' 

Im{! f(t,x)r(T)dlx__t -}-Ik4(t'T)~176 Fk6(t'x) r ( T ) d l = f 2 ( Q ' , L  L '~ t~$s, (2.6) 

-2-.  
Here kflt, x)(i=i,f),fi(t)(/= i, 2) are functions of the class H* on L and Z, defined by the formulas 

(@ = ~( '0,  * = Xt(t)) 

- " ~  -q - q b (r (7 2 - 72) 

I { a(,) d in ~2-L. a((p)-a(r ~2[ 

b ( , )  ' 

S 1 ( 0 )  d ~  1 a ( ~ )  S 2 ( ~ )  d 'g z 

k 4 ( t , x ) -  Xl__tl dl "~- - t  2 dl " 

b(@)S . (~ ) ( t - - x )  d~; 2 ( 2 . 7 )  
k s (t, x) = x 2 -- t~ dl ' 

k6 (t, .r) _~. E ~  { - t, "~ ~ [t, zls]" 
o, "r ~ [z ~ t], 

/ : ( t ) -  t {F-~)+ ! ~ /7(,~)d~ ] 
2b(~)  " - ~ L  7r2 --~ I 

-- crx COS I ,t-oo 00 �9 ~-r- xy (Ix2 cos ~ -]- s in ~p) -+ cry/t 2 s ln  ~P , 
(~t. - -  ~%) @5. c o s ,  - -  s in  r  

{ ~ = l S v ( f f ) B ' } - - I m { !  S2(t~)F1('r)d'r2-~-'~2 }" 

S r ( t ) d l = P  s ( s ~ l , m ) ;  (2.8) 
18 

Lj 
A = (~I - ~ )  (~i - ~=) (~i - ' ~ ) ,  

(2.9) 

which follow from the conditions of equilibrium of the ribs, and single-valuedness of the dis- 
placements should be appended to (2.5) and (2.6). 

In combination with the additional conditions (2.8) and (2.9), the system of singular 
equations (2.5) and (2.6) yields the unique solution of the constant problem. 

If the plate is weakened by a system of rectilinear cracks arranged along one line, then 
(2.5) is simplified significantly: 
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k 3(t, ' t)  r (x) d~ -- / t  (t), t ~ L .  

If there are no ribs, (2.5) and (2.9) go over into equations in [4, 5]. 

Performing the passage to the limit analogously to [4] in (2.5) and (2.9), we obtain the 
appropriate equations of the problem for the isotropic plate case. 

3. Introducing the change of variables rs(t ) = h~s(~), t ~ 18, 

%fit)  = X~j(~), Ztj(8) = 'PzS-i§ + i~2j+m(~)' t ~ L 7, --1 < ~ < i,  

j =  t, k, s =  1, m, 

after some manipulation of (2.5)-(2.7) we obtain a system of singular integral equations 

/ ~  (Po' 13) + k~j @0, 8) ~ (8) d8 = ~V~ (8~ 
- - I  

a n d  t h e  a d d i t i o n a l  c o n d i t i o n s  ( 2 . 8 )  a n d  (209)  t a k e  t h e  f o r m  

2 k + m  I 

' ~  y V l ) ( 8 ) % ( ~ ) d S = C l  ( l ~ - l , 2 k + m ) ,  
j=l. 

--1 

where we do not present the general form of fzj, k~j, YZj because of the awkwardness. 

Let us note that if the plate is subjected to uniform tension and shear at infinity, is 
reinforced along the segments ~s = {ts(B) = Xs + iYs + O(fl + i)/21 -- I < fl < i} by stiffen- 
ers, and is weakened along the arc L = {t(B) = x(~) + iy(B)] -- 1 < B < i} by a slit free of 
external forces, then k = i, m ffi 2, and 

[.i.i(~JO, 8)  = i (]  = t ,  2 ) ,  [12 = 12t = 114 = [13 = [23 = [21 = O, 

[33 : [ 4 4 '  /31 ~-~ - - [ 4 3 '  [ l j  = 0 (1 : 3, 4,  j : t ,  2 ) ,  

2t~(~) (8 - 80) 
/~  (~o. 8) + % (80, 8) - ~S-(~i-~-~(~' 

A = Im p..A,, ,  k .  (~o, 8) 2E~FzA [ - -  t, ~ > 8o, I = 1, 2, 

klS(So,~)~--- ~ I m  PvAx'P �9 ( l @ ] , l , ] = l , 2 ) ,  5 - - -7"i  A t,,(~) - tv (80) 

h/3(~0,8)=_.t_t i m [  Plt'l (~) _ P2[a(*)-f-b(ali)]t'.,.(8) } 
A / tl (8) __ t~ ([Bo) tu(~) -- t~ (15o) �9 ( / =  1, 2), 
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TABLE I 

U 

0 
i 

t0 

N = i 0  
0,65601 
0,66838 
0,69466 

i,0 

N=20 
0,6560i 
0,66835 
0,69464 

0,i  

N = I 0  N=20 
0,23613 0,23062 
0,33637 0,33001 
0,58037 0,57573 

k/4(~ o, ~) ----- ~.,:t Be (l = l ,  2), 

k3J (~o' ~) -~ ik4j (~o '  ~) "--- Kai  (~o' ~) (] = i, 2), ~_{.A~ ,,(%) ~ ~ } 
K a J ( " O ' " ) =  t{ ( , )  Z tl  (,o ) b ( X P o ) t { ( O ) - - t l ( , o )  b(%bo)[t .~i")-- tz("o)l  " 

-+2 ~'(~1 
C k = 0 (k ~--- i, 4), ?II ~- Y22 = ~' ?33 = ~44' 

Tj,=?~j=?~=~=O (]=2,4,1=3,4) 

~34 = -- ~43' ~33 (6) + iV,3 (~) = t, (~), 

N3 ([}o) -~- iN, ([~o) -- 2hi {(~7 cos ~o -~- "xr ("2 cos r + sin 0)o) ~- ~ . t~  sin q'o} . 
([~t, - -  ~tl) (,~ cos ~o -- sin ~Po) 

As is known [16], the desired functions have the form ~z(~)=~?(~)(i--~')-1:% 
ture formulas for the singular integrals [14, 17], we can write (2.5) and 

N 2h+m 

i=I n=l t i  - -  xj  

U . t{ COS 2 i - - i u ,  i = l , N ,  ]-----1, N - - t ,  l , n ~ l . 2 k 4 - m ,  xj = cos 1-~-,. ], = 2N" 

Using quadra- 
(2.6) in the form 

(3.l) 

and the additional conditions (2.8) and (2.9) in the form 

N 2h+m 

.%-r yr ,  ( t 0  ,~o (t  0 = c , .  z, ,~ = , , 2 k  + ,,,, i = , ,  N .  
i~1  n=l 

(3.2) 

The system (3.1) and (3.2) yields (2k + m)N linear algebraic equations in the approxi- 
mate values of the desired functions ~0(~) at the Chebyshev nodes 8 = ti (i = i, N). t 

By knowing the solutions of (2.5) and (2.6), we find the asymptotic values of the stress- 
es in the neighborhood of the ends of the cracks Lj from the formulas 

(- i?z R~ ~;% (%) = i~, k = I (3.3) 

(i = t ,  k), 

where the upper sign is taken for c = aj, and the lower for c ffi b/X~j(~)= ~(~)(I--~)~ [16]. 
The value of n0 %2~(• i) in (3.3) is determined in terms of %~i(~ I)by means of (2.3). 

4. Results of computations are presented below for a plate from orthtropic material 
(the anisotropy parameters are El/E2 = 3, E~/G = 6.24, 9~ = 0.25), weakened along an arc seg- 
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ment of the ellipse L={Ricos~-~+*R=sin~-~[--l<g<l } b y  a s l i t  f r e e  of external forces 

and reinforced along the segments I s of length 0, parallel to the x axis, by stiffeners of 
constant cross section Fo with the Young's modulus Eo (L N Is = ~) �9 The case of uniform ten- 
sion along the x axis at infinity z (~= l,a~= ~x~=~ is considered. It is assumed that the 
principle direction of anisotropy E, makes an angle ~ with the x axis. 

Graphs of the intensity coefficients are represented in Fig. 2 for rupture and shear, 
respectively= 

V V k I = l i ra  a n . ~ ,  k~ = l i m  z~t t - , c  a t~a T '  r = l  t - -  r 

(descending and ascending curves) at the upper end of the crack as a function of the angle 
for different ratios between the ellipse semiaxes R = R,/R2o Here 1 is half the crack 
length; c, apex of the crack; and t, a point on the continuation of the crack beyond the end 
c. The horizontal line corresponds to the value of k, at the ends of rectilinear cracks 
(R ffi 0). There are no ribs. 

Results of computations illustrating the influence of the geometric and stiffness param- 
eters of the structure on the magnitude of the correction factor k** ffi k,/k,,~ (k,o| is the 
intensity factor for a plate without ribs weakened by one rectilinear crack) are shown in 

Figs. 3-5. 

Figure 3 illustrates the dependence of k** on the rib length p for the case of symmetric- 
ally reinforced ribs. Here @ ffi 0; U ffi 0; i; I0 (the lines 1-3, respectively, U = E,0h(Eo- 
Fo)-* is the relative stiffness of the rib), and the solid lines correspond to the case a = 
0.I while the dashes are for a ffi 0.2. 

Graphs Of k** at the lower end of the crack are presented in Fig. 4 as a function of a 
for the case p ffi 2, U = 0, l, i0 (lines 1-3, respectively). The solid lines correspond to 
the case ~=0, and the dashes to p= a2 

The dependence of k** on the rib length p at the crack end close to the rib is shown in 
Fig. 5 for the case s = 0.i, 0.5, ~ (curves 1-3, respectively), where @ = 0 , a = i. 

Results of computations exhibited good convergence of the algorithm. Presented for com- 
parison in the table are values of k, in a plate weakened by a rectilinear crack and rein- 
forced by symmetrically arranged stiffeners (see Fig. 3), for ~ = 0,~ = 2 when N ffi i0, 20 in 
system (3.1) and (3.2). As a diminishes and U increases the accuracy lowers somewhat. 

Results of the computations for a plate with a rectilinear c~ack in the case of a passage 
to the limit to an isotropic material agree well with the data in [7, ll]. 

lo 

2. 

LITERATURE CITED 

R. V. Gol'dshtein and R. K. Sagalnik, "Plane problem of curvilinear cracks in an elastic 
body," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3 (1970). 
R. V. Gol'dshtein and L. N. Savova, "On determination of the opening and stress intensity 
coefficients for a smooth curvilinear crack in an elastic plane," Izv. Akad. Nauk SSSR, 
Mekh. Tverd. Tela, No. 2 (1972). 

317 



3o Ao Mo Lin'kov, "Integral equations of elasticity theory for a plane with slits loaded 
by equilibrated systems of forces," Dokl. Akad. Nauk SSSR, 218, Noo 6 (1974). 

4. L. A. Fil'shtinskii, "Elastic equilibrium of a plane anisotropic medium weakened by ar- 
bitrary curvilinear cracks. Passage to the limit to an isotropic medium," Izv. Akad. 
Nauk SSSR, Mekh. Tverd. Tela, No. 5 (1976). 

5. N. Io Ioakimidis and Po S. Theocaris, "The problem of the simple smooth crack in an in- 
finite anisotropic medium," Int. J. Solids Structures, 13, No. 4 (1977). 

6o E. A. Morozova and V. Z. Patton, "On the influence of reinforcing ribs on crack propa- 
gation," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1961). 

7~ Ro Greif and J. L. Sanders, "The effect of a stringer on the stress in a cracked sheet," 
J. Appl. Mech., 32, No. i (1965). 

8~ G, P. Cherepanov and V. M. Mirsalimov, "On the effect of stiffeners on crack develop- 
ment," Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1 (1969). 

9~ K. Arin, "A plate with a crack, stiffened by a partially debonded stringer," Engo Fract. 
Mech., ~, No. i (1974). 

i0o G. T. Zhorzholiani, "Influence of a stringer on the stress distribution around ends of 
a slit," Soobshch. Akad. Nauk Gruz. SSR, 74, No~ 3 (1974). 

ii. K. L. Agayan, "On a contact problem for an infinite plate with a crack reinforced by 
elastic coverings," Izv. Akad. Nauk Arm. SSR, Ser. Mekh., 29, No. 4 (1976). 

12. I, D. Suzdal'nitskii, "Periodic problem of plate reinforcement by stringers," Prikl. 
Mat. Mekh., 43, No. 4 (1979). 

13. Do I. Sherman, "On the solution of aplane problem of elasticity theory for anisotropic 
medium," Prikl. Mat. Mekh., ~, No. 6 (1946)o 

14. A. I. Kalandiya, Mathematical Methods of Two-Dimensional Elasticity [in Russian], Nauka, 
Moscow (1973). 

15. S. G. Lekhnitskii, Anisotropic Plates [in Russian], GITTL, Moscow (1957). 
16. N. I. Muskhelishvili, Singular Integral Equations [in Russian], Nauka, Moscow (1968). 
17o F. Erdogan, G. D. Gupta, and T. S. Cook, "Numerical solution of singular integral equa- 

tions,"~Mechanics of Fracture. I. Methods of Analysis and Solutions of Crack Problems. 
Noordhoff, Leyden (1973). 

318 


